Bài giảng Xử lý ảnh - Chương 3: Cải thiện và phục hồi ảnh (Tiếp) - Hoàng Văn Hiệp
Cải thiện ảnh
Xử lý ảnh để đầu ra “tốt” hơn đầu vào cho
mục đích nhất định
Do đó: Cải thiện ảnh rất phụ thuộc vào từng
ứng dụng cụ thể
Phương pháp cải thiện ảnh
Xử lý trên miền không gian
o Xử lý trên điểm ảnh
o Xử lý mặt nạ
Xử lý trên miền tần số
o Các phép lọc
Xử lý trên màu sắc
Xử lý ảnh để đầu ra “tốt” hơn đầu vào cho
mục đích nhất định
Do đó: Cải thiện ảnh rất phụ thuộc vào từng
ứng dụng cụ thể
Phương pháp cải thiện ảnh
Xử lý trên miền không gian
o Xử lý trên điểm ảnh
o Xử lý mặt nạ
Xử lý trên miền tần số
o Các phép lọc
Xử lý trên màu sắc
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Xử lý ảnh - Chương 3: Cải thiện và phục hồi ảnh (Tiếp) - Hoàng Văn Hiệp", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- bai_giang_xu_ly_anh_chuong_3_cai_thien_va_phuc_hoi_anh_tiep.pdf
Nội dung text: Bài giảng Xử lý ảnh - Chương 3: Cải thiện và phục hồi ảnh (Tiếp) - Hoàng Văn Hiệp
- 10/19/2011 Xử lý ảnh Hoàng Văn Hiệp Bộ môn Kỹ thuật máy tính Viện Công nghệ thông tin và Truyền thông Email: hiephv@soict.hut.edu.vn 1 Nội dung Chương 1. Giới thiệu chung Chương 2. Thu nhận & số hóa ảnh Chương 3. Cải thiện & phục hồi ảnh Chương 4. Phát hiện tách biên, phân vùng ảnh Chương 5. Trích chọn các đặc trưng trong ảnh Chương 6. Nén ảnh Chương 7. Lập trình xử lý ảnh bằng Matlab và C 2 1
- 10/19/2011 Cải thiện ảnh trên miền tần số Miền tần số? Phép biến đổi Fourier . Phép biến đổi Fourier của hàm liên tục một biến f(x) được định nghĩa như sau: . Phép biến đổi ngược 5 Phép biến đổi Fourier Phép biến đổi Fourier của hàm liên tục 2 biến f(x, y) . Biến đổi xuôi . Biến đổi ngược 6 3
- 10/19/2011 Phép biến đổi Fourier (tiếp) Ví dụ: (0,0) y 255 255 x f(x,y) Tính biến đổi Fourier của ảnh trên 9 Phép biến đổi Fourier (tiếp) 1 F(0,0) ( f (0,0) f (0,1) f (1,0) f (1,1)) 127.5 2*2 1 F(0,1) ( f (0,0)*e j2 (0*0/ 2 1*0/ 2) f (0,1)*e j2 (0*0/ 2 1*1/ 2) 2*2 f (1,0)*e j2 (0*1/ 2 1*0/ 2) f (1,1)*e j2 (0*1/ 2 1*1/ 2) ) 127.5 1 F(1,0) ( f (0,0)*e j2 (1*0/ 2 0*0/ 2) f (0,1)*e j2 (1*0/ 2 0*1/ 2) 2*2 f (1,0)*e j2 (1*1/ 2 0*0/ 2) f (1,1)*e j2 (1*1/ 2 0*1/ 2) ) 0 1 F(1,1) ( f (0,0)*e j2 (1*0/ 2 1*0/ 2) f (0,1)*e j2 (1*0/ 2 1*1/ 2) 2*2 f (1,0)*e j2 (1*1/ 2 1*0/ 2) f (1,1)*e j2 (1*1/ 2 1*1/ 2) ) 0 10 5
- 10/19/2011 Phép biến đổi Fourier (tiếp) Biểu diễn bằng cos, sin . Công thức Euler o Mỗi giá trị của u: ứng với 1 tần số o u f(u): miền tần số 13 Phép biến đổi Fourier (tiếp) Biểu diễn trên hệ cực . Trong đó: gọi là phổ biên độ o Và: gọi là phổ pha của biến đổi Fourier . Phổ năng lượng 14 7
- 10/19/2011 Phép biến đổi Fourier (tiếp) F(0, 0) ứng với u = M/2 và v = N/2 tức là ở tâm ảnh (M và N thường chẵn) F(0, 0) còn gọi là thành phần một chiều của phổ (thành phần tần số bằng 0) 17 Phép biến đổi Fourier (tiếp) Một số chú ý 18 9
- 10/19/2011 Phép biến đổi Fourier (tiếp) 21 Phép biến đổi Fourier (tiếp) 22 11
- 10/19/2011 Phép biến đổi Fourier (tiếp) 25 Ý nghĩa phổ biên độ và phổ pha 26 13
- 10/19/2011 Ý nghĩa phổ biên độ và phổ pha (tiếp) 29 Ý nghĩa phổ biên độ và phổ pha (tiếp) Ảnh trộn phổ biên độ của ảnh hạt gạo với phổ pha của ảnh người quay phim 30 15
- 10/19/2011 Tương quan giữa miền không gian và miền tần số 33 Phép lọc trên miền tần số 34 17
- 10/19/2011 Mối quan hệ giữa lọc trên miền tần số và lọc trên miền không gian Nếu 2 bộ lọc h(x, y) và H(u, v) cùng kích thước thì việc tính toán trên miền tần số là nhanh hơn Lọc trên miền tần số trực quan hơn (dễ hình dung cho người dùng hơn) Thông thường chúng ta sử dụng bộ lọc có kích thước nhỏ trên miền không gian . Tìm H(u, v) thực hiện Fourier ngược h(x, y) sau đó áp dụng nhân chập trên miền không gian 37 Phép lọc trên miền tần số Các phép lọc làm trơn ảnh, lọc nhiễu Các phép lọc tăng cường độ nét và cải thiện biên Phép lọc đồng hình 38 19
- 10/19/2011 Bộ lọc thông thấp lý tưởng (tiếp) D0: tần số cắt, xác định % năng lượng bị loại bỏ 41 Bộ lọc thông thấp lý tưởng (tiếp) Xác định tần số cắt D0 . Tổng năng lượng toàn ảnh . Phần trăm năng lượng trong bán kính r . Chọn giá trị 훼 r = D0 42 21
- 10/19/2011 Bộ lọc thông thấp lý tưởng (tiếp) Do không có tính trơn tại điểm cắt hiệu ứng run ảnh (hiệu ứng ringing) 45 Hiệu ứng ringing 46 23
- 10/19/2011 Bộ lọc thông thấp Butterworth (tiếp) 49 Bộ lọc thông thấp Butterworth (tiếp) Ảnh hưởng của bậc n 50 25
- 10/19/2011 Bộ lọc thông thấp Gaussian Nếu chọn với D0 là tần số cắt 53 Bộ lọc thông thấp Gaussian (tiếp) 54 27
- 10/19/2011 Một số ứng dụng của bộ lọc thông thấp 57 Các phép lọc tăng cường độ nét và cải thiện biên Lọc thông cao lý tưởng Lọc thông cao butterworth Lọc thông cao Gaussian 58 29
- 10/19/2011 Bộ lọc thông cao Butterworth 61 Bộ lọc thông cao Gaussian 62 31
- 10/19/2011 Lọc thông cao Laplacian (tiếp) Từ đó suy ra laplacian trên miền không gian có thể tìm bằng cách 65 Lọc thông cao Laplacian (tiếp) 66 33
- 10/19/2011 Lọc đồng hình (tiếp) Biến đổi Z(u, v) trên miền tần số: Chuyển sang miền không gian 69 Lọc đồng hình (tiếp) 70 35
- 10/19/2011 Lọc đồng hình (tiếp) Ví dụ: = 0.5; = 2 73 Lọc đồng hình (tiếp) Ứng dụng trong việc loại bỏ các nhiễu nhân 74 37