Bài giảng Tín hiệu và hệ thống - Chương 5 - Trần Quang Việt
5.1. Hãy xác định biến đổi Laplace của các tín hiệu trên hình 5.1 bằng 2 cách:
Tính trực tiếp tích phân và dùng tính chất
5.2. Xác định biến đổi Laplace của các tín hiệu sau:
5.3. Hãy xác định biến đổi Laplace ngược (1 bên) của các hàm
5.4. Hãy xác định biến đổi Laplace ngược của các hàm sau
5.5. Cho tín hiệu nhân quả tuần hoàn g(t) do sự lặp lại của tín hiệu f(t) với chu
kỳ T0 như hình 5.5. Giả sử f(t) có biến đổi Laplace là F(s), hãy chứng tỏ rằng G(s) được tính theo phương trình sau:
Tính trực tiếp tích phân và dùng tính chất
5.2. Xác định biến đổi Laplace của các tín hiệu sau:
5.3. Hãy xác định biến đổi Laplace ngược (1 bên) của các hàm
5.4. Hãy xác định biến đổi Laplace ngược của các hàm sau
5.5. Cho tín hiệu nhân quả tuần hoàn g(t) do sự lặp lại của tín hiệu f(t) với chu
kỳ T0 như hình 5.5. Giả sử f(t) có biến đổi Laplace là F(s), hãy chứng tỏ rằng G(s) được tính theo phương trình sau:
Bạn đang xem tài liệu "Bài giảng Tín hiệu và hệ thống - Chương 5 - Trần Quang Việt", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- bai_giang_tin_hieu_va_he_thong_chuong_5_tran_quang_viet.pdf
Nội dung text: Bài giảng Tín hiệu và hệ thống - Chương 5 - Trần Quang Việt
- Problem/ch-5 5.1. Hãy xác nh bi n i Laplace c a các tín hi u trên hình 5.1 b ng 2 cách: Tính tr c ti p tích phân và dùng tính ch t Hình 5.1 5.2. Xác nh bi n i Laplace c a các tín hi u sau: aft) ()= ut () − ut ( − 1) eft) ()= teut−t ( − τ ) −(t − τ ) bft) ()= e ut ( − τ ) fft) ()= sin[ω0 ( t − τ )]( ut − τ ) −(t − τ ) cft) ()= e ut () gft) ()= sin[ω0 ( t − τ )]() ut −t dft) ()= eut ( − τ ) gft) ()= sin(ω0 tut )( − τ ) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10
- Problem/ch-5 5.5. Cho tín hi u nhân qu tu n hoàn g(t) do s l p l i c a tín hi u f(t) v i chu k T0 nh ư hình 5.5. Gi s f(t) có bi n i Laplace là F(s), hãy ch ng t r ng G(s) ư c tính theo ph ươ ng trình sau: F( s ) G( s ) = 1− e−sT 0 Áp d ng k t qu trên hãy xác nh bi n i Laplace c a p(t) Hình 5.5 1 Bi t: 1++++=xxx2 3 ;||1 x < 1− x Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10
- Problem/ch-5 s + 5 5.8. Cho h th ng có hàm truy n: H( s ) = s2 +5 s + 6 Xác nh áp ng zero-state y(t) c a h th ng khi f(t) là: aft) ()= e−3t ut () bft) ()= e−4t ut () cft) ()= e−4(t − 5) ut ( − 5) dft) ()= e−4(t − 5) ut () eft) ()= e−4t ut ( − 5) 2s + 3 5.9. Cho h th ng có hàm truy n: H( s ) = s2 +2 s + 5 Xác nh áp ng zero-state y(t) c a h th ng khi f(t) là: aft) ()= 10 ut () bft) ()= ut ( − 5) s 5.10. Cho h th ng có hàm truy n: H( s ) = s2 + 9 − Xác nh áp ng zero-state y(t) c a h th ng khi f(t) là: ft()= (1 − eutt )() Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10
- Problem/ch-5 5.13. Xác nh áp ng zero-state c a h th ng là m ch c ng hư ng nh ư hình 5.13? Hình 5.13 5.14. Ch ng t r ng hàm truy n c a h th ng là m ch i n trên hình 5.14a là: Ka R 1 Hs()= ; K =+ 1b ; a = sa+ R RC a Ks Và c a m ch i n trên hình 5.14b là: H( s ) = s+ a Hình 5.14 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10
- Problem/ch-5 5.17. Cho hai h th ng là 2 m ch i n phân áp nh ư hình 5.17a, xác nh hàm truy n H1(s) và H2(s). M ch i n trên hình 5.17b là ghép n i ti p 2 h th ng này, ch ng t r ng H(s) ≠H1(s)H 2(s)? Hình 5.17 5.18. Hãy th c hi n h th ng b ng các ph ươ ng pháp tr c ti p, ghép n i ti p, ghép song song; bi t hàm truy n: s( s + 2) 3(s s + 2) a) H ( s ) = b) H ( s ) = (s+ 1)( s + 3)( s + 4) (s+ 1)( s2 + 2 s + 2) 2s − 4 2s + 3 c) H ( s ) = d) H ( s ) = 2 (s+ 2)( s 2 + 4) 5(s s+ 2)( s + 3) s( s+ 1)( s + 2) s3 e) H ( s ) = f) H ( s ) = (s+ 5)( s + 6)( s + 8) (s+ 1)2 ( s + 2)( s + 3) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10
- Problem/ch-5 5.20. Hãy th c hi n các hàm truy n sau b ng m ch i n op-amp −10 10 s + 2 a) H ( s ) = b) H ( s ) = c) H ( s ) = s + 5 s + 5 s + 5 5.21. Trình bày 2 m ch i n op-amp khác nhau th c hi n hàm truy n sau: s + 2 3 H( s )= = 1 − s+5 s + 5 5.22. Trình bày m ch i n op-amp th c hi n hàm truy n sau theo ph ươ ng pháp tr c ti p: 3s + 7 s2 +5 s + 2 a) H ( s ) = b) H ( s ) = s2 +4 s + 10 s2 +4 s + 13 5.23. Xác nh các thông s tr, ts, PO, es, er, ep c a các h th ng có hàm truy n sau: 9 4 95 a) H ( s ) = b) H ( s ) = c) H ( s ) = s2 +3 s + 9 s2 +3 s + 4 s2 +10 s + 100 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10
- Problem/ch-5 5.26. Hàm truy n vòng h c a 4 h th ng vòng kín nh ư sau: K( s + 1) K( s + 5) a) H ( s ) = b) H ( s ) = s( s+ 3)( s + 5) s( s + 3) K( s + 1) K( s + 1) c) H ( s ) = d) H ( s ) = ss(+ 3)( s + 5)( s + 7) ss(+ 4)( s2 + 2 s + 2) Hãy v qu tích nghi m s ? Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/09-10