Bài giảng Vật lý đại cương - Chương 13: Thuyết động học phân tử các chất khí và định luật phân bố - Đỗ Ngọc Uấn
Mở đầu
• Chuyển động nhiệt: chuyển động hỗn loạn của
các phân tử/ nguyển tử / xác định nhiệt độ của
vật. Đối tượng của vật lý phân tử và Nhiệt
động lực học.
? Hai phương pháp nghiên cứu:
? Ph-ương pháp thống kê:NC qúa trình đối với
từng phân tử riêng biệt + định luật thống kê --
>Tìm Quy luật chung của cả tập thể phân tử và
giải thích các tính chất của hệ (dựa vào cấu tạo
phân tử)
• Chuyển động nhiệt: chuyển động hỗn loạn của
các phân tử/ nguyển tử / xác định nhiệt độ của
vật. Đối tượng của vật lý phân tử và Nhiệt
động lực học.
? Hai phương pháp nghiên cứu:
? Ph-ương pháp thống kê:NC qúa trình đối với
từng phân tử riêng biệt + định luật thống kê --
>Tìm Quy luật chung của cả tập thể phân tử và
giải thích các tính chất của hệ (dựa vào cấu tạo
phân tử)
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Vật lý đại cương - Chương 13: Thuyết động học phân tử các chất khí và định luật phân bố - Đỗ Ngọc Uấn", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- bai_giang_vat_ly_dai_cuong_chuong_13_thuyet_dong_hoc_phan_tu.pdf
Nội dung text: Bài giảng Vật lý đại cương - Chương 13: Thuyết động học phân tử các chất khí và định luật phân bố - Đỗ Ngọc Uấn
- Bμi giảng Vật lý đại c−ơng Tác giả: PGS. TS Đỗ Ngọc Uấn Viện Vật lý kỹ thuật Tr−ờng ĐH Bách khoa Hμ nội
- Mở đầu • Chuyển động nhiệt: chuyển động hỗn loạn của các phân tử/ nguyển tử / xác định nhiệt độ của vật. Đối t−ợng của vật lý phân tử vμ Nhiệt động lực học. Hai ph−ơng pháp nghiên cứu: Ph−ơng pháp thống kê:NC qúa trình đối với từng phân tử riêng biệt + định luật thống kê >Tìm Quy luật chung của cả tập thể phân tử vμ giải thích các tính chất của hệ (dựa vμo cấu tạo phân tử)
- Đ1.Những đặc tr−ng cơ bản của khí lý t−ởng cổ điển • Hệ nhiệt động: gồm nhiều phân tử/nguyên tử (hoặc nhiều vật) >Môi tr−ờng xung quanh gồm các ngoại vật. •Hệcôlập: Không t−ơng tác, không trao đổi Nhiệt & Công với môi tr−ờng. Cô lập nhiệt, cô lập cơ. • Thông số trạng thái: Lμ các tính chất đặc tr−ng của hệ. -> Đại l−ợng vật lý p, m, T,V lμ các th.số tr.th ->Các thông số trạng thái: Độclập, Phụ thuộc
- •Nhiệtđộ: đại l−ợng đặc tr−ng cho độ nóng, lạnh. Đo bằng nhiệt kế (Đo bằng cách đo một đại l−ợng vật lý biến thiên theo nhiệt độ: ví dụ: độ cao cột thuỷ ngân, suất điện động). • Nhiệt độ tuyệt đối (K-Kelvin), nhiệt độ Bách phân (0C -Celsius): TK = toC + 273,16
- Sai lệch giữa các định lý trên với thựcnghiệm: khi p cao (p>500at) hoặc T thấp & cao. Khí lý t−ởng: Khí tuân theo ĐL Boyle-Mariotte vμ Gay-Lussac lμ khí lý t−ởng. 0 KLT ở điều kiện tiêu chuẩn: T0=273,16K (0 C), 5 -3 3 p0=1,033at=1,013.10 Pa, V0=22,410.10 m . 2. Ph−ơng trình trạng thái khí lý t−ởng: 1 mol khí lý t−ởng có 6,023.1023 (số Avogadro) phân tử với m=μ kg tuân theo ĐL Clapayron- Mendeleev: pV=RT
- Đ3. Thuyết động học phân tử 1. những cơ sở thực nghiệm về chất khí: * Kích th−ớc phân tử cỡ 10-10m; ở khoảng cách: r 15.10-10m (điều kiện bình th−ờng) Bỏ qua lực t−ơng tác. Các phân tử khí chiếm 1/1000 thể tích. * Chuyển động Brown: Hỗn loạn không ngừng. Trong Khí: Hoμntoμn hỗn loạn; Lỏng: dao động + dịch chuyển; Rắn: Dao động quanh vị trí cố định;
- F 3. Ph−ơng trình cơ bản của thuyết p = động học phân tử: ΔS ΔS * Thiết lập ptrình cơ bản: áp suất do v1 v2 lực va chạm của ft lên thμnh bình: v.Δt ΔS- phần diện tích thμnh-đáy trụ, (v1=v=v2) Δt -thời gian va đập; v.Δt-chiều cao trụ Số phân tử chứa trong trụ: n=n . v.Δt. ΔS; 0 n 1 Số ph/t va chạm với đáy Δtrụ: =n n = . v . Δ t . Δ s 6 6 0 Xung l−ợng lực do 1 ft: fΔt=|m0v2-m0v1 |=-2m0v 2 m v2 m1 v F = 0 Δn = 0 n vΔΔ t S Δt Δt 6 0 1 2 1 2 n= mΔ v ⇒ S p =n0 m 0 v 3 0 0 3
- 23 N=n0V=6,023.10 số phân tử trong 1mol k=R/N=1,38.10-23j/K Hằng số Boltzmann * Động năng tịnh tiến trung bình tỷ lệ 3 W = kT với nhiệt độ tuyệt đối của khối khí. 2 * T lμ số đo c−ờng độ chuyển động hỗn loạn của các phân tử của hệ.-> chuyển động nhiệt. * Các phân tử chuyển động không ngừng -> T≠0K 3. Vận tốc căn quân ph−ơng: 1 2 3 2 3 kT 3 RT =W m0 v =kT →v=c v = = 2 2 m0 μ R=kN & Nm0 = μ; m0 - khối l−ợng 1 phân tử.
- 4. Nội năng khí lý t−ởng Nội năng = Động năng + thế năng t−ơng tác giữa các phân tử + W dao động cuả các nguyên tử. Bỏ qua t−ơng tác -> Nội năng của khí lý t−ởng bằng tổng động năng của các phân tử. Wtp = Wtịnh tiến+ Wquay z Bậc tự do i lμ số toạ độ xác định các khả năng chuyển x y động của phân tử trong 3 toạ độ x, y, z xác không gian đinh 3 chuyển Phân tử đơn nguyên tử có i=3 động tịnh tiến
- Phân bố đều cho các bậc tự do: ĐL (Maxwell): Động năng trung bình của các phân tử đ−ợc phân bố đều cho các bậc tự do của phân tử. Biểu thức tính nội năng: Của một mol lμ của N phân tử: ikT iRT UN= = R=kN; i -số bậc tự do 0 2 2 Của khối khí khối l−ợng m kg: Nội năng của khí lý m m iRT U = U = t−ởng chỉ phụ thuộc μ 0 μ 2 vμo nhiệt độ
- 2. Định luật phân bố phân tử theo vận tốc maxwell: dn lμ số pt có vận tốc trong khoảng v đến v+dv, thì xác suất của ft có vận tốc trong khoảng (v, v+dv) lμ: dn F= ( v ) dv Suydn ra nF= ( v ) dv ∞ n ∞ Maxwell tìm ra hμm nF ( v ) dv= n → F (= v ) dv 1 ∫ ∫ phân bố: F(v) 0 0 m2 v − 0 2 F ( v )= const2 .kT v e 3 2 4 ⎛ m0 ⎞ const = ⎜ ⎟ vxs v π2⎝ kT⎠ dF ( v ) F(v) đạt 2 kT dv = 0 v xs = dv cực đại tại m0
- 2 kT 2 RT 3 kT 3 RT v xs= = v c= = m0 μ m0 μ 8 kT 8 RT v = = m π μπ 0 v xs < v < v c V Xác suất < V trung bình < V căn quân ph−ơng ý nghĩa: x Xác suất phân tử có vxs lμ cao nhất. y VC ứng với động năng trung bình của phân tử. z Tại nhiệt độ T của hệ, mỗi phân tử có vận tốc khác nhau, v lμ giá trị trung bình cộng của vận tốc các phân tử trong cả hệ (các p/t có cùng v).
- Số phân tử nằm trong cột khí: dn = n0S.dh = n0dh Trọng l−ợng khối khí: dP = dn.m0.g = m0 gn0dh áp suất tăng: p dp dP= − m = − gn= dh − dh m g 0 0 0 kT dp m gdh = − 0 p kT
- Phân bố Maxwell-Boltzmann Xác uấts hai hiện t−ợng đồng thời độc lập bằng tích các xác suất xảy ra các hiện t−ợng ấy: Tại vùng toạ độ x ữ x+dx, y ữ y+dy, z ữ z+dz Tổng ốs phân tử óc vận tốc trong khoảng vx ữ vx +dvx, vy ữ vy +dvy, vz ữ vz +dvz, 1 m2 v − ( 0 +W) kT 2 t dN= A . Ne dxdydzdvdvx y dv z Xác định A theo: 2 1 m0 v dN − ( +W)t = A .kT e 2 dxdydzdvdv dv= 1 ∫N ∫∫∫ ∫∫∫ x y z ,xv y ,vx z v y z