Bài giảng Điện tử số - Chương 2: Hàm logic - Nguyễn Trung Lập

Năm 1854 Georges Boole, một triết gia đồng thời là nhà toán học người Anh cho xuất
bản một tác phẩm về lý luận logic, nội dung của tác phẩm đặt ra những mệnh đề mà để trả lời
người ta chỉ phải dùng một trong hai từ đúng (có, yes) hoặc sai (không, no).
Tập hợp các thuật toán dùng cho các mệnh đề này hình thành môn Đại số Boole. Đây là
môn toán học dùng hệ thống số nhị phân mà ứng dụng của nó trong kỹ thuật chính là các
mạch logic, nền tảng của kỹ thuật số.
Chương này không có tham vọng trình bày lý thuyết Đại số Boole mà chỉ giới hạn trong
việc giới thiệu các hàm logic cơ bản và các tính chất cần thiết để giúp sinh viên hiểu vận
hành của một hệ thống logic. 
pdf 25 trang thamphan 2800
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Điện tử số - Chương 2: Hàm logic - Nguyễn Trung Lập", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfbai_giang_dien_tu_so_chuong_2_ham_logic.pdf

Nội dung text: Bài giảng Điện tử số - Chương 2: Hàm logic - Nguyễn Trung Lập

  1. ___Chương 2 Hàm Logic II - 1 " CHƯƠNG 2 HÀM LOGIC D HÀM LOGIC CƠ BẢN D CÁC DẠNG CHUẨN CỦA HÀM LOGIC Š Dạng tổng chuẩn Š Dạng tích chuẩn Š Dạng số Š Biến đổi qua lại giữa các dạng chuẩn D RÚT GỌN HÀM LOGIC Š Phương pháp đại số Š Phương pháp dùng bảng Karnaugh Š Phương pháp Quine Mc. Cluskey ___ ___ Năm 1854 Georges Boole, một triết gia đồng thời là nhà toán học người Anh cho xuất bản một tác phẩm về lý luận logic, nội dung của tác phẩm đặt ra những mệnh đề mà để trả lời người ta chỉ phải dùng một trong hai từ đúng (có, yes) hoặc sai (không, no). Tập hợp các thuật toán dùng cho các mệnh đề này hình thành môn Đại số Boole. Đây là môn toán học dùng hệ thống số nhị phân mà ứng dụng của nó trong kỹ thuật chính là các mạch logic, nền tảng của kỹ thuật số. Chương này không có tham vọng trình bày lý thuyết Đại số Boole mà chỉ giới hạn trong việc giới thiệu các hàm logic cơ bản và các tính chất cần thiết để giúp sinh viên hiểu vận hành của một hệ thống logic. 2.1. HÀM LOGIC CƠ BẢN 2.1.1. Một số định nghĩa - Trạng thái logic: trạng thái của một thực thể. Xét về mặt logic thì một thực thể chỉ tồn tại ở một trong hai trạng thái. Thí dụ, đối với một bóng đèn ta chỉ quan tâm nó đang ở trạng thái nào: tắt hay cháy. Vậy tắt / cháy là 2 trạng thái logic của nó. - Biến logic dùng đặc trưng cho các trạng thái logic của các thực thể. Người ta biểu diễn biến logic bởi một ký hiệu (chữ hay dấu) và nó chỉ nhận 1 trong 2 giá trị : 0 hoặc 1. Thí dụ trạng thái logic của một công tắc là đóng hoặc mở, mà ta có thể đặc trưng bởi trị 1 hoặc 0. - Hàm logic diễn tả bởi một nhóm biến logic liên hệ nhau bởi các phép toán logic. Cũng như biến logic, hàm logic chỉ nhận 1 trong 2 giá trị: 0 hoặc 1 tùy theo các điều kiện liên quan đến các biến. Thí dụ, một mạch gồm một nguồn hiệu thế cấp cho một bóng đèn qua hai công tắc mắc nối tiếp, bóng đèn chỉ cháy khi cả 2 công tắc đều đóng. Trạng thái của bóng đèn là một hàm theo 2 biến là trạng thái của 2 công tắc. Gọi A và B là tên biến chỉ công tắc, công tắc đóng ứng với trị 1 và hở ứng với trị 0. Y là hàm chỉ trạng thái bóng đèn, 1 chỉ đèn cháy và 0 khi đèn tắt. Quan hệ giữa hàm Y và các biến A, B được diễn tả nhờ bảng sau: ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  2. ___Chương 2 Hàm Logic II - 3 2.1.2.4. Giản đồ thời gian Dùng để diễn tả quan hệ giữa các hàm và biến theo thời gian, đồng thời với quan hệ logic. Thí dụ: Giản đồ thời gian của hàm OR của 2 biến A và B, tại những thời điểm có một (hoặc 2) biến có giá trị 1 thì hàm có trị 1 và hàm chỉ có trị 0 tại những thời điểm mà cả 2 biến đều bằng 0. (H 2.2) 2.1.3. Qui ước Khi nghiên cứu một hệ thống logic, cần xác định qui ước logic. Qui ước này không được thay đổi trong suốt quá trình nghiên cứu. Người ta dùng 2 mức điện thế thấp và cao để gán cho 2 trạng thái logic 1 và 0. Qui ước logic dương gán điện thế thấp cho logic 0 và điện thế cao cho logic 1 Qui ước logic âm thì ngược lại. 2.1.4. Hàm logic cơ bản (Các phép toán logic) 2.1.4.1. Hàm NOT (đảo, bù) : Y = A Bảng sự thật A Y = A 0 1 1 0 2.1.4.2. Hàm AND [tích logic, toán tử (.)] : Y = A.B Bảng sự thật A B Y=A.B 0 0 0 0 1 0 1 0 0 ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  3. ___Chương 2 Hàm Logic II - 5 - Trong trường hợp 3 biến (và suy rộng ra cho nhiều biến), hàm EX - OR có giá trị 1 khi số biến bằng 1 là số lẻ. Tính chất này được dùng để nhận dạng một chuỗi dữ liệu có số bit 1 là chẵn hay lẻ trong thiết kế mạch phát chẵn lẻ. 2.1.5. Tính chất của các hàm logic cơ bản: 2.1.5.1. Tính chất cơ bản: ♦ Có một phần tử trung tính duy nhất cho mỗi toán tử (+) và (.): A + 0 = A ; 0 là phần tử trung tính của hàm OR A . 1 = A ; 1 là phần tử trung tính của hàm AND ♦ Tính giao hoán: A + B = B + A A . B = B . A ♦ Tính phối hợp: (A + B) + C = A + (B + C) = A + B + C (A . B) . C = A . (B . C) = A . B . C ♦ Tính phân bố: - Phân bố đối với phép nhân: A . (B + C) = A . B + A . C - Phân bố đối với phép cộng: A + (B . C) = (A + B) . (A + C) Phân bố đối với phép cộng là một tính chất đặc biệt của phép toán logic ♦ Không có phép tính lũy thừa và thừa số: A + A + . . . . . + A = A A . A . . . . . . . . A = A ♦ Tính bù: AA= A+ A = 1 A.A= 0 2.1.5.2. Tính song đối (duality): Tất cả biểu thức logic vẫn đúng khi [thay phép toán (+) bởi phép (.) và 0 bởi 1] hay ngược lại. Điều này có thể chứng minh dễ dàng cho tất cả biểu thức ở trên. Thí dụ : Α + Β = Β + Α ⇔ Α.Β = Β.Α Α + A Β = Α + Β ⇔ Α( A +Β) = Α.Β A + 1 = 1 ⇔ A.0 = 0 2.1.5.3. Định lý De Morgan Định lý De Morgan được phát biểu bởi hai biểu thức: A+ B + C = A.B.C A.B.C= A + B + C Định lý De Morgan cho phép biến đổi qua lại giữa hai phép cộng và nhân nhờ vào phép đảo. ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  4. ___Chương 2 Hàm Logic II - 7 f(A,B) = A.f(1,B) + A .f(0,B) Mỗi hàm trong hai hàm vừa tìm được lại có thể triển khai theo biến B f(1,B) = B.f(1,1) + Β.f(1,0) & f(0,B) = B.f(0,1) + B .f(0,0) Vậy: f(A,B) = AB.f(1,1) + A .B.f(0,1) + A B .f(1,0) + A B .f(0,0) f(i,j) là giá trị riêng của f(A,B) khi A=i và B=j trong bảng sự thật của hàm. Với 3 biến, trị riêng của f(A, B, C) là f(i, j, k) khi A=i, B=j và C=k ta được: f(A,B,C) = A.B.C.f(1,1,1) + A.B. C .f (1,1,0) + A. B .C.f(1,0,1) + A. B . C .f(1,0,0) + A .B.C.f(0,1,1) + A .B. C .f(0,1,0) + A . B .C.f(0,0,1) + A . B . C .f(0,0,0) Khi triển khai hàm 2 biến ta được tổng của 22 = 4 số hạng Khi triển khai hàm 3 biến ta được tổng của 23 = 8 số hạng Khi triển khai hàm n biến ta được tổng của 2n số hạng Mỗi số hạng là tích của một tổ hợp biến và một trị riêng của hàm. Hai trường hợp có thể xảy ra: - Giá trị riêng = 1, số hạng thu gọn lại chỉ còn các biến: A . B .C.f(0,0,1) = A . B .C nếu f(0,0,1) = 1 - Giá trị riêng = 0, tích bằng 0 : A . B . C .f(0,0,0)= 0 nếu f(0,0,0) = 0 và số hạng này biến mất trong biểu thức của tổng chuẩn. Thí dụ: Cho hàm 3 biến A,B,C xác định bởi bảng sự thật: Hàng A B C Z=f(A,B,C) 0 0 0 0 0 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 0 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 Với hàm Z cho như trên ta có các trị riêng f(i, j, k) xác định bởi: f(0,0,1) = f(0,1,0) = f(0,1,1) = f(1,0,1) = f(1,1,1) =1 f(0,0,0) = f(1,0,0) = f(1,1,0) = 0 - Hàm Z có trị riêng f(0,0,1)=1 tương ứng với các giá trị của tổ hợp biến ở hàng (1) là A=0, B=0 và C=1 đồng thời, vậy A . B .C là một số hạng trong tổng chuẩn - Tương tự với các tổ hợp biến tương ứng với các hàng (2), (3), (5) và (7) cũng là các số hạng của tổng chuẩn, đó là các tổ hợp: A .B. C , A .B.C, A. B .C và A.B.C - Với các hàng còn lại (hàng 0,4,6), trị riêng của f(A,B,C) = 0 nên không xuất hiện trong triển khai. ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  5. ___Chương 2 Hàm Logic II - 9 và biến mất trong biểu thức của tích chuẩn. Lấy lại thí dụ trên: Hàng A B C Z=f(A,B,C) 0 0 0 0 0 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 0 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 Các trị riêng của hàm đã nêu ở trên. - Hàm Z có giá trị riêng f(0,0,0) = 0 tương ứng với các giá trị của biến ở hàng 0 là A=B=C=0 đồng thời, vậy A+B+C là một số hạng trong tích chuẩn. - Tương tự với các hàng (4) và (6) ta được các tổ hợp A +B+C và A + B +C. - Với các hàng còn lại (hàng 1, 2, 3, 5, 7), trị riêng của f(A,B,C) = 1 nên không xuất hiện trong triển khai. Tóm lại, ta có: Z = (A + B + C).( A + B + C).( A + B +C ) - Ý nghĩa của định lý thứ hai: Nhắc lại tính chất của các hàm AND và OR: Để b1.b2 bn =0 chỉ cần ít nhất một biến trong b1, b2, , bn =0 và a1 + a2 + + ap =0 khi các biến a1, a2, , ap đồng thời bằng 0. Như vậy trong thí dụ trên: Z = (hàng 0).(hàng 4).(hàng 6) Z = (A + B + C).( A + B + C).( A + B +C ) Thật vậy, ở hàng 0 tất cả biến = 0: A=0, B=0, C=0 đồng thời nên có thể viết (A+B+C) = 0. Tương tự cho hàng (4) và hàng (6). Tóm lại, Biểu thức tích chuẩn gồm các thừa số, mỗi thừa số là tổng các biến tương ứng với tổ hợp có giá trị riêng =0, một biến giữ nguyên nếu nó có giá trị 0 và được đảo nếu có giá trị 1. Số thừa số của biểu thức bằng số số 0 của hàm thể hiện trên bảng sự thật. 2.2.3. Đổi từ dạng chuẩn này sang dạng chuẩn khác: Nhờ định lý De Morgan, hai định lý trên có thể chuyển đổi qua lại. Trở lại thí dụ trên, thêm cột Z vào bảng sự thật \ Hàng A B C Z=f(A,B,C) Z ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  6. ___Chương 2 Hàm Logic II - 11 2.3.1. Phương pháp đại số Phương pháp này bao gồm việc áp dụng các tính chất của hàm logic cơ bản. Một số đẳng thức thường được sử dụng được nhóm lại như sau: (1) AB + A B = B (A+B).( A +B) = B (1’) (2) A + AB = A A.(A+B) = A (2’) (3) A + A B = A + B A.( A +B) = A.B (3’) Chứng minh các đẳng thức 1, 2, 3: (1) AB + A B = B(A+ A ) = B.1 = B (2) A + AB = A(1+B) = A (3) A + A B = (A+ A ).(A+B) = A+B Các đẳng thức (1’), (2’), (3’) là song đối của (1), (2), (3). Các qui tắc rút gọn: - Qui tắc 1: Nhờ các đẳng thức trên nhóm các số hạng lại. Thí dụ: Rút gọn biểu thức ABC + AB C + A B CD Theo (1) ABC + AB C = AB Vậy ABC + AB C + A B CD = AB + A B CD = A(B+ B CD) Theo (3) B + B CD = B + CD Và kết quả cuối cùng: ABC + AB C + A B CD = A(B+CD) - Qui tắc 2: Ta có thể thêm một số hạng đã có trong biểu thức logic vào biểu thức mà không làm thay đổi biểu thức. Thí dụ: Rút gọn biểu thức: ABC + A BC + A B C + AB C Thêm ABC vào để được: (ABC + A BC) + (ABC + A B C) + (ABC + AB C ) Theo (1) các nhóm trong dấu ngoặc rút gọn thành: BC + AC + AB Vậy: ABC + A BC + A B C + AB C = BC + AC + AB - Qui tắc 3: Có thể bỏ số hạng chứa các biến đã có trong số hạng khác Thí dụ 1: Rút gọn biểu thức AB + B C + AC Biểu thức không đổi nếu ta nhân một số hạng trong biểu thức với 1, ví dụ (B+ B ): AB + B C + AC = AB + ΒC + AC(B+ B ) Triển khai số hạng cuối cùng của vế phải, ta được: AB + B C +ABC + A B C Thừa số chung: AB(1+C) + B C(1+A) = AB + B C Tóm lại: AB + B C + AC = AB + B C. Trong bài tóan này ta đã đơn giản được số hạng AC. Thí dụ 2: Rút gọn biểu thức (A+B).( B +C).(A+C) Biểu thức không đổi nếu ta thêm vào một thừa số có trị =0, ví dụ B.Β (A+B).( B +C).(A+C) = (A+B).( B +C).(A+C+ B .Β) = (A+B).( B +C).(A + B +C).(A +Β+C) Theo (2’) (A+B).(A +B+C) = (A+B) và ( B +C).(A+ B +C) = ( B +C) Vậy: (A+B).( B +C).(A+C) = (A+B).( B +C) Trong bài tóan này ta đã bỏ số hạng A+C ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  7. ___Chương 2 Hàm Logic II - 13 Với 3 biến ABC, ta được: ABC = 000, 001, 011, 010, 110, 111, 101, 100 (số nhị phân tương ứng: 0, 1, 3, 2, 6, 7, 5, 4) Lưu ý là ta có thể thiết lập bảng Karnaugh theo chiều nằm ngang hay theo chiều đứng. Do các tổ hợp ở các bìa trái và phải kề nhau nên ta có thể coi bảng có dạng hình trụ thẳng đứng và các tổ hợp ở bìa trên và dưới cũng kề nhau nên ta có thể coi bảng có dạng hình trụ trục nằm ngang. Và 4 tổ hợp biến ở 4 góc cũng là các tổ hợp kề nhau. Hình (H 2.4) là bảng Karnaugh cho 4 biến. (H 2.4) 2.3.2.3. Chuyển hàm logic vào bảng Karnaugh. Trong mỗi ô của bảng ta đưa vào giá trị của hàm tương ứng với tổ hợp biến, để đơn giản chúng ta có thể chỉ ghi các trị 1 mà bỏ qua các trị 0 của hàm. Ta có các trường hợp sau: ♦ Từ hàm viết dưới dạng tổng chuẩn: Thí dụ 1 : f(A,B,C) = A . B .C + A .B.C + A.B.C (H 2.5) ♦ Nếu hàm không phải là dạng chuẩn, ta phải đưa về dạng chuẩn bằng cách thêm vào các số hạng sao cho hàm vẫn không đổi nhưng các số hạng chứa đủ các biến. Thí dụ 2 : Y = A BC + AB D + A B C + A C D Hàm này gồm 4 biến, nên để đưa về dạng tổng chuẩn ta làm như sau: Y = A BC(D+ D ) + AB D (C+ C ) + A B C(D+ D ) + A C D(B+ B ) Y = A BCD+ A BC D + ABC D + AB C D + A B CD + A B C D + AB C D +A B C D Và Hàm Y được đưa vào bảng Karnaugh như sau (H 2.6): ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  8. ___Chương 2 Hàm Logic II - 15 0 0 0 0 0 1 0 0 1 1 2 0 1 0 0 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 Ta ghi 1 vào các ô tương ứng với các tổ hợp biến ở hàng 1, 3 và 7, kết quả giống như ở thí dụ 1. ♦ Trường hợp có một số tổ hợp cho giá trị hàm không xác định: nghĩa là ứng với các tổ hợp này hàm có thể có giá trị 1 hoặc 0, do đó, ta ghi dấu X vào các ô tương ứng với các tổ hợp này, lúc gom nhóm ta sử dụng nó như số 1 hay số 0 một cách tùy ý sao cho có được kết quả rút gọn nhất. Thí dụ 7: f(A,B,C,D) = Σ(3,4,5,6,7) với các tổ hợp từ 10 dến 15 cho hàm có trị bất kỳ (không xác định) (H 2.8). (H 2.8) 2.3.2.4. Qui tắc gom nhóm Các tổ hợp biến có trong hàm logic hiện diện trong bảng Karnaugh dưới dạng các số 1 trong các ô, vậy việc gom thành nhóm các tổ hợp kề nhau được thực hiện theo qui tắc sau: - Gom các số 1 kề nhau thành từng nhóm sao cho số nhóm càng ít càng tốt. Điều này có nghĩa là số số hạng trong kết quả sẽ càng ít đi. - Tất cả các số 1 phải được gom thành nhóm và một số 1 có thể ở nhiều nhóm. - Số số 1 trong mỗi nhóm càng nhiều càng tốt nhưng phải là bội của 2k (mỗi nhóm có thể có 1, 2, 4, 8 số 1). Cứ mỗi nhóm chứa 2k số 1 thì tổ hợp biến tương ứng với nhóm đó giảm đi k số hạng. - Kiểm tra để bảo đảm số nhóm gom được không thừa. 2.3.2.5. Qui tắc rút gọn - Kết quả cuối cùng được lấy như sau: Hàm rút gọn là tổng của các tích: Mỗi số hạng của tổng tương ứng với một nhóm các số 1 nói trên và số hạng này là tích của các biến, biến A (hay A ) là thừa số của tích khi tất cả các ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  9. ___Chương 2 Hàm Logic II - 17 (H 2.11) cho Y = B C + B D Thí dụ 3 : Rút gọn hàm S cho bởi bảng sự thật: N A B C D S 0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 0 9 1 0 0 1 0 10→15 x (Không xác định) Bảng Karnaugh: (H 2.12) (H 2.12) Kết quả : S = B C + BC 2.3.2.6. Rút gọn các hàm nhiều biến bằng cách dùng bảng Karnaugh 4 biến: Để rút gọn các hàm nhiều biến (5 và 6 biến) người ta có thể dùng bảng Karnaugh 4 biến. Dưới đây là vài thí dụ: Thí dụ 4 : Rút gọn hàm f(A,B,C,D,E) = ∑ (0,2,8,10,13,15,16,18,24,25,26,29,31) với (7,9,14,30) không xác định - Trước nhất vẽ 2 bảng Karnaugh cho 4 biến BCDE, một ứng với A và một với A - Bảng ứng với A dùng cho các số từ 0 đến 15 - Bảng ứng với A dùng cho các số từ 16 đến 31 - Nhóm các số 1 có cùng vị trí ở hai bảng, kết quả sẽ đơn giản biến A - Nhóm các số 1 của từng bảng cho đến hết , kết quả được xác định như cách làm thông thường, nhớ A và A trong từng nhóm (H 2.13). ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  10. ___Chương 2 Hàm Logic II - 19 2.3.3. Phương pháp Quine-Mc. Cluskey Phương pháp Quine-Mc. Cluskey cũng dựa trên tính kề của các tổ hợp biến để đơn giản số biến trong các số hạng của biểu thức dạng tổng (minterm). Trong quá trình đơn giản này có thể xuất hiện các số hạng giống nhau mà ta có thể bỏ bớt được. Phương pháp được thực hiện qua 2 giai đọan: Giai đọan 1: Dựa trên tính kề của các tổ hợp biến để đơn giản số biến trong các số hạng của biểu thức dạng tổng (minterm). Giai đọan 2: Kiểm tra và thực hiện việc tối giản . Thí dụ dưới đây minh họa cho việc thực hiện phương pháp để rút gọn một hàm logic. Thí dụ 1: Rút gọn hàm f(A,B,C,D) = Σ(1,2,4,5,6,10,12,13,14) ♣ Giai đọan 1 - Các minterm được nhóm lại theo số số 1 có trong tổ hợp và ghi lại trong bảng theo thứ tự số 1 tăng dần: Trong thí dụ này có 3 nhóm: Nhóm chứa một số 1 gồm các tổ hợp 1, 2, 4 Nhóm chứa hai số 1 gồm các tổ hợp 5, 6, 10, 12 Nhóm chứa ba số 1 gồm các tổ hợp 13, 14 Bảng 1: A B C D x 1 0 0 0 1 x 2 0 0 1 0 x 4 0 1 0 0 x 5 0 1 0 1 x 6 0 1 1 0 x 10 1 0 1 0 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 - Mỗi tổ hợp trong một nhóm sẽ được so sánh với mỗi tổ hợp trong nhóm kế cận. Nếu 2 tổ hợp chỉ khác nhau một biến, ta có thể dùng biểu thức AB + A B = B để đơn giản được 1 biến. Biến đã đơn giản được thay bởi dấu -. Đánh dấu x vào các tổ hợp đã xét để tránh sai sót Như vậy, tổ hợp thứ nhất của nhóm thứ nhất 0001 so sánh với tổ hợp thứ nhất của nhóm thứ hai 0101 vì chúng chỉ khác nhau ở biến B, vậy chúng có thể đơn giản thành 0-01. Hai số hạng 1 và 5 đã được gom lại thành nhóm (1,5) và được ghi vào bảng 2. Tiếp tục so sánh tổ hợp 0001 này với các tổ hợp còn lại của nhóm 2 (0110, 1010, 1100), vì chúng khác nhau nhiều hơn 1 bit nên ta không được kết quả nào khác. Như vậy, ta đã so sánh xong tổ hợp thứ nhất, đánh dấu x trước tổ hợp này để ghi nhớ. Công việc tiến hành tương tự cho nhóm thứ hai và thứ ba. Lưu ý: Nhận xét về việc so sánh các tổ hợp với nhau ta thấy có thể thực hiện nhanh được bằng cách làm bài toán trừ 2 số nhị phân tương ứng của 2 tổ hợp, nếu kết quả là một số có trị = 2k (1, 2, 4,8 ) thì 2 tổ hợp đó so sánh được và biến được đơn giản chính là biến có trọng ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  11. ___Chương 2 Hàm Logic II - 21 Trên cùng hàng của tổ hợp ta đánh dấu * dưới các cột có số tương ứng (ví dụ hàng chứa tổ hợp 1,5 có các dấu * ở cột 1 và 5). Tương tự cho các tổ hợp khác. Bảng 4 1 2 4 5 6 10 12 13 14 1,5 ← *↓ *↓ 2,6 ; 10,14 ← *↓ *↓ *↓ *↓ 4,5 ; 12,13 ← *↓ * *↓ *↓ 4,6 ; 12,14 * * * * x x x x x x x x x Xét các cột chỉ chứa một dấu *, đó là các cột 1,2,10 và 13, các tổ hợp ở cùng hàng với các dấu * này sẽ được chọn, đó là các tổ hợp (1,5), (2,6 ; 10,14), (4,5 ; 12,13), tương ứng với A C D + C D + B C . Đánh dấu X dưới các cột tương ứng với các số có trong các tổ hợp đã chọn. Nếu tất cả các cột đều được đánh dấu thì các tổ hợp đã chọn đủ để diễn tả hàm ban đầu. Trong trường hợp của bài toán này, sau khi chọn các tổ hợp nói trên thì tất cả cột đã được đánh dấu do đó kết quả cuối cùng là (sau khi loai bỏ tổ hợp B D ): f(A,B,C,D) = A C D + C D + B C Thí dụ 2: Rút gọn hàm f(A,B,C,D) = Σ(3,4,6,7,8,11,12,15) ♣ Giai đọan 1 Bảng 1: A B C D x 4 0 1 0 0 x 8 0 0 1 0 x 3 0 0 1 1 x 6 0 1 1 0 x 12 1 1 0 0 x 7 0 1 1 1 x 11 1 0 1 1 x 15 1 1 1 1 So sánh các tổ hợp của 2 nhóm gần nhau ta được kết quả cho bảng thứ hai - Bảng thứ hai gồm các tổ hợp đã được rút gọn và chỉ còn lại 3 nhóm (giảm một nhóm so với bảng 1). Bảng 2 A B C D 4,6 0 1 - 0 4,12 - 1 0 0 8,12 1 - 0 0 x 3,7 0 - 1 1 x 3,11 - 0 1 1 6,7 0 1 1 - x 7,15 - 1 1 1 x 11,15 1 - 1 1 ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  12. ___Chương 2 Hàm Logic II - 23 b. Rút gọn hàm F Bảng Karnaugh F(A,B.C)= A BC + ABC + A BC c. Diễn tả hàm F chỉ dùng hàm AND và NOT Dùng địnhlý De Morgan, lấy đảo 2 lần hàm F: F(A,B.C)= F(A,B.C)= A BC + ABC + A BC = A BCABC A BC Thí dụ 2: Cho hàm logic F(A, B, C, D) thỏa tính chất: F(A,B,C,D) = 1 khi có ít nhất 3 biến bằng 1 a- Rút gọn hàm F. b- Diễn tả hàm F chỉ dùng hàm OR và NOT Giải a- Rút gọn hàm F Ta có thể đưa hàm vô bảng Karnaugh mà không cần vẽ bảng sự thật. Ta đưa số 1 vào tất cả các ô chứa 3 trị 1 trở lên Và kết quả của hàm rút gọn là: F(A,B,C,D) = ABC + ABD + ACD + BCD b- Diễn tả hàm F chỉ dùng hàm OR và NOT Dùng định lý De Morgan cho từng số hạng trong tổng Viết lại hàm F: F(A,B,C,D)= ABC +ABD +ACD + BCD = A +BC + + A + BD+ + A + CDBCD+ + + + BÀI TẬP 1. Diễn tả mỗi mệnh đề dưới đây bằng một biểu thức logic: a/ Tất cả các biến A,B,C,D đều bằng 1 b/ Tất cả các biến A,B,C,D đều bằng 0 ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ
  13. ___Chương 2 Hàm Logic II - 25 m/ f(A,B,C,D.E) = Σ(0,2,8,10,13,15,16,18,24,25,26,29,31) với các tổ hợp biến (7,9,14,30) cho hàm không xác định n/ f(A,B,C,D,E,F) = Σ(2,3,6,7,8,9,12,13,14,17,24,25,28,29,30,40,41,44,45,46,56,57,59,60,61,63) o/ f(A,B,C,D,E,F) = Σ(9,11,13,15,16,18,20,22,25,27,29,31,32,34,36,38,41,43,45,47,48,50,52,54) 10. Làm lại các bài tập từ 9f bằng phương pháp Quine-Mc Cluskey. ___ ___Nguyễn Trung Lập KỸ THUẬT SỐ