Bài giảng Digital Signal Processing - Chapter 1: Sampling and Reconstruction - Nguyen Thanh Tuan

1. Introduction
A typical signal processing system includes 3 stages:
 The digital processor can be programmed to perform signal processing
operations such as filtering, spectrum estimation. Digital signal processor can be
a general purpose computer, DSP chip or other digital hardware.
Sampling and Reconstruction
 The analog signal is digitalized by an A/D converter
 The digitalized samples are processed by a digital signal processor.
 The resulting output samples are converted back into analog by a
D/A converter 

pdf 45 trang thamphan 2820
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Digital Signal Processing - Chapter 1: Sampling and Reconstruction - Nguyen Thanh Tuan", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfbai_giang_digital_signal_processing_chapter_1_sampling_and_r.pdf

Nội dung text: Bài giảng Digital Signal Processing - Chapter 1: Sampling and Reconstruction - Nguyen Thanh Tuan

  1. Chapter 1 Sampling and Reconstruction Nguyen Thanh Tuan, ClickM.Eng. to edit Master subtitle style Department of Telecommunications (113B3) Ho Chi Minh City University of Technology Email: nttbk97@yahoo.com
  2. 1. Introduction  A typical signal processing system includes 3 stages:  The analog signal is digitalized by an A/D converter  The digitalized samples are processed by a digital signal processor.  The digital processor can be programmed to perform signal processing operations such as filtering, spectrum estimation. Digital signal processor can be a general purpose computer, DSP chip or other digital hardware.  The resulting output samples are converted back into analog by a D/A converter. Digital Signal Processing 3 Sampling and Reconstruction
  3. 3. Sampling  Sampling is to convert a continuous time signal into a discrete time signal. The analog signal is periodically measured at every T seconds  x(n)≡x(nT)=x(t=nT), n= -2, -1, 0, 1, 2, 3 ?  T: sampling interval or sampling period (second);  Fs=1/T: sampling rate or frequency (samples/second or Hz) Digital Signal Processing 5 Sampling and Reconstruction
  4. Example 2  Consider the two analog sinusoidal signals 7 1 x1( t ) 2cos(2 t ), x( t ) 2cos(2 t ); t ( s ) 8 2 8 These signals are sampled at the sampling frequency Fs=1 Hz. Find the discrete-time signals ? Solution: 1 7 1 7 x( n ) x ( nT ) x ( n ) 2cos(2 n ) 2cos( n ) 1 1 1 F 8 1 4 s 1 2cos((2 ) nn ) 2cos( ) 44 1 1 1 1 x2( n ) x 2 ( nT ) x 2 ( n ) 2cos(2 n ) 2cos( n ) Fs 8 1 4  Observation: x1(n)=x2(n) based on the discrete-time signals, we cannot tell which of two signals are sampled ? These signals are called “alias” Digital Signal Processing 7 Sampling and Reconstruction
  5. 4. Aliasing of Sinusoids  In general, the sampling of a continuous-time sinusoidal signal x ( t ) A cos(2  F 0 t ) at a sampling rate Fs=1/T results in a discrete-time signal x(n).  The sinusoids x kk ( t ) A cos(2  F t ) is sampled at Fs , resulting in a discrete time signal xk(n).  If Fk=F0+kFs, k=0, ±1, ±2, ., then x(n)=xk(n) . Proof: (in class)  Remarks: We can that the frequencies Fk=F0+kFs are indistinguishable from the frequency F0 after sampling and hence they are aliases of F0 Digital Signal Processing 9 Sampling and Reconstruction
  6.  Fs/2 ≥ Fmax Fig: Spectrum replication caused by sampling Fig: Typical badlimited spectrum  Fs/2 < Fmax Fig: Aliasing caused by overlapping spectral replicas Digital Signal Processing 11 Sampling and Reconstruction
  7.  The values of Fmax and Fs depend on the application Application Fmax Fs Biomedical 1 KHz 2 KHz Speech 4 KHz 8 KHz Audio 20 KHz 40 KHz Video 4 MHz 8 MHz Digital Signal Processing 13 Sampling and Reconstruction
  8. Example 3  The analog signal x(t)=cos(20πt) is sampled at the sampling frequency Fs=40 Hz. a) Plot the spectrum of signal x(t) ? b) Find the discrete time signal x(n) ? c) Plot the spectrum of signal x(n) ? d) The signal x(n) is an input of the ideal reconstructor, find the reconstructed signal xa(t) ? Digital Signal Processing 15 Sampling and Reconstruction
  9.  Remarks: xa(t) contains only the frequency components that lie in the Nyquist interval (NI) [-Fs/2, Fs/2]. sampling at Fs ideal reconstructor  x(t), F0 NI > x(n) > xa(t), Fa=F0 sampling at Fs ideal reconstructor  xk(t), Fk=F0+kFs > x(n) > xa(t), Fa=F0  The frequency Fa of reconstructed signal xa(t) is obtained by adding to or substracting from F0 (Fk) enough multiples of Fs until it lies within the Nyquist interval [-Fs/2, Fs/2]. That is FFFas mod( ) Digital Signal Processing 17 Sampling and Reconstruction
  10. Example 6  Let x(t) be the sum of sinusoidal signals x(t)=4+3cos(πt)+2cos(2πt)+cos(3πt) where t is in milliseconds. a) Determine the minimum sampling rate that will not cause any aliasing effects ? b) To observe aliasing effects, suppose this signal is sampled at half its Nyquist rate. Determine the signal xa(t) that would be aliased with x(t) ? Plot the spectrum of signal x(n) for this sampling rate? Digital Signal Processing 19 Sampling and Reconstruction
  11. 8. Ideal antialiasing prefilter  The signals in practice may not band-limited, thus they must be filtered by a lowpass filter Fig: Ideal antialiasing prefilter Digital Signal Processing 21 Sampling and Reconstruction
  12.  The attenuation of the filter in decibels is defined as HF() A( F ) 20log10 ( dB ) HF()0 where f0 is a convenient reference frequency, typically taken to be at DC for a lowpass filter.  α10 =A(10F)-A(F) (dB/decade): the increase in attenuation when F is changed by a factor of ten.  α2 =A(2F)-A(F) (dB/octave): the increase in attenuation when F is changed by a factor of two. N  Analog filter with order N, |H(F)|~1/F for large F, thus α10 =20N (dB/decade) and α10 =6N (dB/octave) Digital Signal Processing 23 Sampling and Reconstruction
  13. Example 7 Determine the output signal y(t) and ya(t) in the following cases: a)When there is no prefilter, that is, H(F)=1 for all F. b)When H(F) is the ideal prefilter with cutoff Fs/2=20 KHz. c)When H(F) is a practical prefilter with specifications as shown below: The filter’s phase response is assumed to be ignored in this example. Digital Signal Processing 25 Sampling and Reconstruction
  14. Fig: Frequency response of staircase reconstructor Digital Signal Processing 27 Sampling and Reconstruction
  15. Review Hoạt động của bộ lấy mẫu lý tưởng? Hiện tượng chồng lấn? Tính chất lặp phổ? Phát biểu định lý lấy mẫu? Hoạt động của bộ khôi phục lý tưởng? Tại sao phải dùng tiền lọc/hậu lọc? Hoạt động của bộ tiền lọc lý tưởng/thực tế? Digital Signal Processing 29 Sampling and Reconstruction
  16. Homework 2 Digital Signal Processing 31 Sampling and Reconstruction
  17. Homework 3 Digital Signal Processing 33 Sampling and Reconstruction
  18. Homework 5 Digital Signal Processing 35 Sampling and Reconstruction
  19. Homework 7 Digital Signal Processing 37 Sampling and Reconstruction
  20. Homework 9 Digital Signal Processing 39 Sampling and Reconstruction
  21. Homework 11  Cho tín hiệu ngõ vào tương tự x(t) = 3cos103πt – 4sin104πt (t: s) đi qua hệ thống lấy mẫu và khôi phục lý tưởng với tần số lấy mẫu Fs = 8 KHz. a) Viết biểu thức của tín hiệu sau lấy mẫu x[n]? Xác định giá trị mẫu x[n=2] của tín hiệu sau lấy mẫu. b) Có hay không 1 tần số lấy mẫu khác (Fsb ≠ 8 KHz) cho cùng kết quả tín hiệu sau lấy mẫu x[n]? Nếu không, hãy chứng minh. Nếu có, hãy chỉ ra 1 tần số lấy mẫu khác đó. c) Vẽ phổ biên độ của tín hiệu sau lấy mẫu trong phạm vi tần số từ 0 đến 10 KHz. d) Xác định biểu thức của tín hiệu sau khôi phục. e) Xác định biểu thức của tín hiệu sau khôi phục trong trường hơp dùng thêm bộ tiền lọc thông thấp thực tế có biên độ phẳng trong tầm [-4 4] KHz và suy giảm với tốc độ -1@0dB/decade bên ngoài dải thông. Digital Signal Processing 41 Sampling and Reconstruction
  22. Homework 13  Cho tín hiệu ngõ vào tương tự x(t) = 14sin23 t + 3sin14 t (t: ms) đi qua hệ thống lấy mẫu và khôi phục lý tưởng với tần số lấy mẫu Fs = 8 KHz. a) Tìm giá trị mẫu x[n=4] của tín hiệu sau lấy mẫu? b) Xác định biểu thức của 1 tín hiệu chồng lấn (aliased signal) với tín hiệu ban đầu x(t)? c) Vẽ phổ biên độ của tín hiệu sau lấy mẫu trong phạm vi tần số từ 0 đến 8 KHz? d) Xác định biểu thức của tín hiệu sau khôi phục? e) Xác định biểu thức của tín hiệu sau khôi phục trong trường hơp dùng thêm bộ tiền lọc thông thấp thực tế có biên độ phẳng trong tầm 4 KHz và suy giảm với tốc độ -4@dB/decade bên ngoài dải thông? f) Xác định 1 tập giá trị thích hợp (A, B, FA ≠ FB) của tín hiệu ngõ vào x(t) = AsinFAt + BsinFBt (t: ms) để tín hiệu sau khôi phục (khi không dùng thêm bộ tiền lọc) y(t) = 2sin2 t (t: ms)? Digital Signal Processing 43 Sampling and Reconstruction
  23. Homework 15 Digital Signal Processing 45 Sampling and Reconstruction