Bài giảng Tín hiệu và hệ thống - Chương 6: Phân tích hệ thống liên tục dùng biến đổi Laplace - Bài 10 - Trần Quang Việt
6.1.1. Biến đổi Laplace thuận
Biến đổi Fourier cho phép phân tích tín hiệu thành tổng của các
thành phần tần số phân tích hệ thống đơn giản & trực quan hơn
trong miền tần số.
Biến đổi Fourier là công cụ chủ yếu để phân tích TH & HT trong
nhiều lĩnh vực (viễn thông, xử lý ảnh, …)
Muốn áp dụng biến đổi Fourier thì tín hiệu phải suy giảm & HT
với đáp ứng xung h(t) phải ổn định.
Biến đổi Fourier cho phép phân tích tín hiệu thành tổng của các
thành phần tần số phân tích hệ thống đơn giản & trực quan hơn
trong miền tần số.
Biến đổi Fourier là công cụ chủ yếu để phân tích TH & HT trong
nhiều lĩnh vực (viễn thông, xử lý ảnh, …)
Muốn áp dụng biến đổi Fourier thì tín hiệu phải suy giảm & HT
với đáp ứng xung h(t) phải ổn định.
Bạn đang xem tài liệu "Bài giảng Tín hiệu và hệ thống - Chương 6: Phân tích hệ thống liên tục dùng biến đổi Laplace - Bài 10 - Trần Quang Việt", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- bai_giang_tin_hieu_va_he_thong_chuong_6_phan_tich_he_thong_l.pdf
Nội dung text: Bài giảng Tín hiệu và hệ thống - Chương 6: Phân tích hệ thống liên tục dùng biến đổi Laplace - Bài 10 - Trần Quang Việt
- Ch-6: Phân tích h th ng liên t c dùng bi n i Laplace Lecture-10 6.1. Bi n i Laplace Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1. Bi n i Laplace 6.1.1. Bi n i Laplace thu n 6.1.2. Bi n i Laplace c a m t s tín hi u thông d ng 6.1.3. Các tính ch t c a bi n i Laplace 6.1.4. Bi n i Laplace ng c Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 1
- 6.1.1. Bi n i Laplace thu n Mi n h i t (ROC) c a bi n i Laplace: t p h p các bi n s trong m t ph ng ph c có σ=Re{s} làm cho φ(t) t n t i bi n i Fourier Ví d : tìm ROC t n t i F(s) c a các tín hi u f(t) sau: ()aft ()= e−at uta (); > 0 ()bft ()= eu−at (); − ta > 0 ()cft ()= ut () Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.2. Bi n i Laplace c a m t s tín hi u thông d ng (a) f(t)= (t) ⇒ F( s )= 1; ROC: s-plane 1 (b) f(t)=e-at u(t); a>0 ⇒ F() s= ; ROC :Re{} s > − a s+ a 1 (c) f(t)=-e-at u(-t); a>0 ⇒ F() s= ; ROC :Re{} s 0 s Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3
- 6.1.3. Các tính ch t c a bi n i Laplace Tích phân mi n th i gian: t F( s ) ft()↔ Fs () ⇒ f(τ ) d τ ↔ ∫ − 0 s 0− t ∫ f(τ ) d τ F( s ) ∫ f(τ ) d τ ↔−∞ + −∞ s s T l th i gian: 1 s ft()↔ Fs () ⇒ f() at↔ F ;0 a > a a Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.3. Các tính ch t c a bi n i Laplace Tích ch p mi n th i gian: ft()↔ Fsft ();() ↔ Fs () ⇒ 1 12 2 ft1()∗ ft 2 () ↔ FsFs 12 ()() Tích ch p mi n t n s : ⇒ 1 ft1()↔ Fsft 12 ();() ↔ Fs 2 () ftft12()()↔2π j [ FsFs 12 () ∗ () ] o hàm trong mi n t n s : dF( s ) ft()↔ Fs () ⇒ tf( t ) ↔− ds −t 1 1 e u( t ) ↔ ⇒ te−t u( t ) ↔ s +1 ()s +1 2 t2 u( t )↔ ? Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 5
- 6.1.4. Bi n i Laplace ng c Xét hàm h u t sau: m m −1 bsm+ bs m −1 +++ bsb 1 0 P( s ) F( s ) =n n −1 = sas+n−1 +++ asa 1 0 Qs () m≥n: improper; m<n: proper, chúng ta chỉ tập trung vào proper!!! m<n Expend Find unknown the proper. coefficients The result by using: start depends on [1] Clearing func n unknown [2] Heaviside Polynomical coefficients m≥n [3] Mixing boths ≥≥ dividing; (k 1, k 2, ) in case m=n F(s)/s Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.4. Bi n i Laplace ng c Khai tri n các hàm proper: Fs()=== Ps ()/ Qs () Xác nh zero & pole c a F(s); zero & pole ph i khác nhau Gi s các pole là: s= λ1,λ2,λ3, Khai tri n F(s) dùng quy lu t sau: • Các pole không l p l i: k k k F( s )=1 + 2 +3 + (s−λ1 )( s − λ 2 )( s − λ 3 ) • Các pole l p l i, gi s λ2 l p l i r l n r−1 k k1 2 j k3 F() s =+∑ r− j ++ ()s−λ1j=0 ( s − λ 2 )( s − λ 3 ) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 7
- 6.1.4. Bi n i Laplace ng c Ph ơ ng h n h p: ph ơ ng pháp nhanh nh t!!! 8s + 10 kk k k • Ví d : F( s ) = =1 +20 + 21 + 22 (s+ 1)( s + 2) 3 (s+ 1) ( s + 2)3 ( s + 2) 2 ( s + 2) 8s + 10 8s + 10 k = = 2 k = = 6 1 s + 2 3 20 s +1 () s=− 1 () s=− 2 sF( s ); s → ∞ : k1+ k 22 = 0⇒ k 22 = − 2 k20k 21 k 22 5 10− 8k1 − k 20 − 4 k 22 s = 0 : k1 + + + = ⇒ k21 = 8 4 2 4 2 10− 16 − 6 + 8 ⇒ k = = − 2 21 2 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.1.4. Bi n i Laplace ng c Ví d : tìm bi n i Laplace ng c c a các hàm sau: 7s - 6 (a ) F(s)= s2 − s − 6 2s2 + 5 (b ) F(s)= s2 +3 s + 2 6(s + 34) (c ) F(s)= s( s2 + 10 s + 34) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 9